
Compiler-Directed Power Density Reduction in
NoC-Based Multi-Core Designs

Sri Hari Krishna Narayanan, Mahmut Kandemir, Ozcan Ozturk
Department of Computer Science and Engineering

The Pennsylvania State University
{snarayan,kandemir,ozturk}@cse.psu.edu

Abstract

As transistor counts keep increasing and clock frequenciesrise, high power consumption is becoming
one of the most important obstacles, preventing further scaling and performance improvements. While
high power consumption brings many problems with it, high power density and thermal hotspots are
maybe two of the most important ones. Current architecturesprovide several circuit based solutions to
cope with thermal emergencies when they occur but exercising them frequently can lead to significant
performance losses. This paper proposes a compiler-based approach that balances the computational
workload across the processors of an NoC based chip multiprocessor such that the chances of experi-
encing a thermal emergency at runtime are reduced. Our results show that the proposed approach cuts
the number of runtime thermal emergencies by 42% on the average on benchmarks tested.

c©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse anycopyrighted component of this work
in other works must be obtained from the IEEE.

This paper was supported by NSF Career Award 0093082, NSF grant 0202007 and a grant
from the GSRC.

Compiler-Directed Power Density Reduction in NoC-Based Multi-Core Designs∗

Sri Hari Krishna Narayanan, Mahmut Kandemir, Ozcan Ozturk

Department of Computer Science and Engineering

The Pennsylvania State University

{snarayan,kandemir,ozturk}@cse.psu.edu

Abstract

As transistor counts keep increasing and clock frequen-
cies rise, high power consumption is becoming one of the
most important obstacles, preventing further scaling and
performance improvements. While high power consump-
tion brings many problems with it, high power density and
thermal hotspots are maybe two of the most important ones.
Current architectures provide several circuit based solu-
tions to cope with thermal emergencies when they occur but
exercising them frequently can lead to significant perfor-
mance losses. This paper proposes a compiler-based ap-
proach that balances the computational workload across
the processors of an NoC based chip multiprocessor such
that the chances of experiencing a thermal emergency at
runtime are reduced. Our results show that the proposed
approach cuts the number of runtime thermal emergencies
by 42% on the average on benchmarks tested.

1 Introduction

High power dissipation is a very serious issue in to-

day’s microprocessors, due to increasing transistor counts

and clock frequencies. One of the problems related to high

power consumption is thermal emergencies [3, 10], which

can be defined as the execution state at runtime where a

certain temperature threshold is reached and current com-

putation cannot continue as it is. If not tackled appropri-

ately, thermal emergencies can lead to disastrous scenarios

in terms of performance degradation and equipment loss.

Prior solutions to controlling thermal emergencies in-

clude circuit and architectural techniques such as [7, 10].

As a practical example, emergency overheating detector is

a circuit technique that first appeared in the P6 series, which

is also implemented in the Pentium 4, Xeon and PentiumM

processors. In this technique, when a certain thermal thresh-

old is reached, the processor suspends its execution (or pow-

ers off). While this and other similar techniques can prevent

∗This paper was supported by NSF Career Award 0093082, NSF grant

0202007 and a grant from the GSRC.

chip burn-outs, frequent suspensions of execution is costly

in terms of performance. This is particularly problematic in

real-time systems. Also, in multiprocessor systems, a small

set of processors can easily become hotspots as a result of

the workload imbalance across the processors.

This paper proposes and experimentally evaluates a

compiler-directed scheme that balances the computational

work across the processors in an NoC based chip mul-

tiprocessor, where processors are organized as a two-

dimensional mesh. The proposed compiler-directed ap-

proach makes use of ILP (integer linear programming) and

operates in two phases. In the first phase, it determines

the largest mesh area that can be occupied by the parallel

computation without exceeding the performance degrada-

tion tolerance specified. In the second phase, it splits the

workloads of select processors across multiple mesh nodes

to further eliminate potential hotspots by balancing out the

power density.

We implemented this approach and tested its behavior

using a set of five applications. Our experiments reveal two

important results. First, the schemeworks well to reduce the

occurrences of thermal emergencies. Second, the scheme

also works well to improve the performance.

The rest of this paper is organized as follows. Section

2 discusses related work and Section 3 presents the high

level view of our approach. Section 4 gives details of the

ILP approach, Section 5 presents our runtime results and

Section 6 concludes the paper.

2 Related Work

Thermal hotspots have been identified as an important

design concern in modern processors [2, 5, 9, 11, 12]. There

exist solutions to this problem based on runtime techniques

involving additional hardware. Usually temperature sensors

are placed in the chip, which report the temperature to an ar-

biter, which in turn decides whether a particular block is too

hot to continue operation or whether communication needs

to be rerouted away from a potential hotspot.

Works such as [13] perform static temperature aware

scheduling such that no processor in a CMP (chip multipro-

cessor) rises above the safe working threshold temperature.

While [13] focusses on a bus-based system, out work targets

NoC based architectures.

Activity migration proposed in [7] as a runtime tech-

nique reduces temperature in CMP environment by ping-

ponging jobs on multiple processing elements. This method

migrates computation to a different part of the chip if the

temperature of one processing unit goes past a certain limit.

This study does not consider the NoC design where the

buffers and routers themselves can also become hot.

A runtime technique for managing thermal emergencies

in the context NoCs has been presented in [10]. It pro-

poses a throttling mechanism in order to route communi-

cation away from a potential thermal hot spot. The work

described in this paper is different from these prior efforts

in that it does not propose changing the dynamic runtime

mechanisms in the hardware that prevent chip damage. In-

stead, it proposes a compiler directed task mapping mech-

anism that reduces the number of such thermal emergency

occurrences at runtime. Consequently the proposed method

can work in tandem with any runtime scheme in question.

3 Overall Approach

In the context of NoCs, a runtime temperature control

mechanism should not allow a processor or router to func-

tion normally if it approaches a temperature threshold τ .

Hence, it is important to reduce the number of such oc-

currences of thermal emergencies that cause shut downs.

This is possible by reducing the power density otherwise

known as the power per unit area of the chip. Normally, the

nature of a default (i.e., performance oriented) mapping of

tasks to processors is such that the communication cost be-

tween pairs of communicating processors is reduced. This

however has the inverse effect of increasing the power den-

sity in a certain area of the chip (where the application is

mapped), which causes performance to deteriorate (when a

thermal emergency is experienced). The approach proposed

in this paper is to reduce the power density of the entire ac-

tive area of the chip, which is defined as the bounding rect-

angle formed by the active processors on the chip.

The power density can be reduced in at least two ways in

the context of NoCs. First, the overall power density is re-

duced by increasing the size of the bounding rectangle, i.e.,

the rectangle in the mesh space to which the application is

mapped. Second, the power density at any point within a

bounding box is reduced by splitting a task scheduled orig-

inally to be executed on one processor across multiple pro-

cessors. In this work, we assume that the underlying net-

work architecture is exposed to the compiler and that the

compiler can specify the task-to-processor mapping to re-

duce the power density.

Processor

Router

P(0,0)

P(1,3)

(a) (b)

Figure 1. (a) High level view of a 3*3 NoC ar-
chitecture. (b) Example of X-Y routing.

4 Mathematical Programming
Model

4.1 NoC Architecture

NoC architectures [1, 4, 8] have been proposed to over-

come the problems associated with long wires used in chip

wide communication. They allow a regular means of com-

munication between on-chip computation blocks, eliminate

unwanted timing complexities, and increase the bandwidth

and latency of communication [4]. Figure 1(a) shows the

high level architecture of the NoC-based multiprocessor

considered in this paper. It comprises of a grid of proces-

sors, with a router for each processor. There exists a physi-

cal, wired connection from router to router.

The rest of this section presents the main constraints

of the ILP (integer linear programming) based model pro-

posed. Due to space constraints, the actual linear constraints

are not presented; instead, their non-linear equivalents are

presented. Recall that our main goal is to modify a given

default (performance oriented) task-to-processor mapping

to reduce the number of thermal emergencies.

The high level view of the implementation of our ap-

proach is shown in Figure 2. The original application is

mapped onto a set of processors by the application mapping

module which is provided as input to our module, which

consists of two phases. In the first phase, the given task to

processor mapping is modified so that the area (bounding

box) occupied by active processors is increased. In the sec-

ond phase, tasks that expend toomuch power on one proces-

sor are split and distributed among multiple processors and

a new thermal aware mapping within the area calculated in

the first phase is found.

4.2 Phase 1

The input to our approach is a performance oriented task-

to-processor mapping as shown in Figure 2. This mapping

is captured by the matrix A in our ILP formulation. It is

Table 1. Terms used in the formulation.

Term Explanation
Ai,j Original task-to-processor mapping
Bi,j Task-to-processor mapping generated by Phase 1

Ci,j,k,l Original communication betweenAi,j andAk,l

C′

i,jk,l Communication betweenBi,j andBk,l

Di,j Task-to-processor mapping generated by Phase 2
ρ Power threshold allowed on a processor

Pi,j Input power utilization array
RXi,j

Router utilization due to horizontal communication

RYi,j
Router utilization due to vertical communication

RXY i,j
Router utilization as a corner router

Ti,j,k,l Processor-to-processor mapping betweenAi,j andBk,l

T ′

i,j,k,l Processor-to-processor mapping betweenBi,j andDk,l

θ Router power
τ Threshold temperature

Wenergy Total window energy
Area Bounding rectangle formed by active processors

Relaxation Extra communication allowance given

W Window size

Phase 1

Phase 2

Default

Code

Mapping

Module

#define N 5000 #define ITER 1int du1[N],
du2[N], du3[N];int au1[N][N][2],
au2[N][N][2], au3[N][N][2];int a11=1,
a12=-1, a13=-1; int a21=2, a22=3,
a23=-3; int a31=5, a32=-5, a33=-2; int
l;/* Initialization loop */ int sig = 1;int
main(){ int kx; int ky; int
kz;printf("Thread:%d\n",mp_numthreads(
)); for(kx = 0; kx < N; kx = kx + 1) {
for(ky = 0; ky < N; ky = ky + 1) {
for(kz = 0; kz <= 1; kz = kz + 1) {
au1[kx][ky][kz] = 1; au2[kx][ky][kz] =
1; au3[kx][ky][kz] = 1; } }} }} /*
main */

Code

ILP Module

Default

Mapping

Overall

power

density

reduced

mapping

Thermal aware mapping

Figure 2. High level view of our scheme.

assumed that processors communicate using X-Y routing.

Figure 1(b) shows an example X-Y routing for communica-

tion between processorsA(0,0) and A(1,3).

Number of Active processors constraints.
Constraint 1 below specifies that the number of active

processors and the original task-to-processor mapping, A,

and the new mapping, B, is the same.

n
∑

i=1

m
∑

j=1

Bi,j =

n
∑

i=1

m
∑

j=1

Ai,j (1)

Graph embedding constraints.
Constraint 2 below states that the variable Ti,j,k,l is 1 if

the task originally assigned to processorAi,j is allocated to

Bk,l in the new mapping. Constraint 3 ensures that each

processor in B executes at most one task. Constraint 4
states that the number of processor-to-processor mappings

between A and B is equal to the number of active proces-

sors in A.

∀i,j

∑

k,l

Ti,j,k,l ≥ Ai,j ∗ Bk,l (2)

∀k,l

∑

i,j

Ti,j,k,l ≤ 1 (3)

∑

i,j,k,l,

Ti,j,k,l =

n
∑

i=1

m
∑

j=1

Ai,j (4)

Communication constraints.
Constraints 5, 6, 7, 8 and 9 given below capture the total

utilization of a router due to communication among proces-

sors. C ′
r1,c1,r2,c2 is a binary matrix entry that takes the

value 1 if processor Pr1,c1 communicates with processor

Pr2,c2 (in the new mapping). RXi,j
and RYi,j

give the total

number of pairs of processors that use the router Ri,j for

communication in the X (horizontal) and Y (vertical) di-

rection respectively. On the other hand, RXYi,j
counts the

number of pairs of processors that use the router Ri,j for

communication in the X and the Y direction. Constraint 9

specifies that Sum R is must be less than the original com-
munication cost plus the relaxation allowed. 1

∀i,j RXi,j
=

∑

r1,c1,r2,c2|i=r1&&
min(c1,c2)≤j≤max(c1,c2)

C′
r1,c1,
r2,c2

(5)

∀i,j RYi,j
=

∑

r1,c1,r2,c2|j=c2&&
min(r1,r2)≤i≤max(r1,r2)

C′
r1,c1,
r2,c2

(6)

∀i,jRXY i,j
=

∑

r1,c1,r2,c2|i=r1&&
j=c2

C′
r1,c1,r2,c2 (7)

Sum R =
∑

i,j

RXi,j
+ RYi,j

− RXY i,j
(8)

Sum R ≤ Input R + Relaxation (9)

Constraints 10 and 11 given below state that two proces-

sors can communicate only if they are both active. Con-

straints 12 and 13 state that a communication between two

processors in the new task-to-processor mapping (B) exists
if two processors in the original task-to-processor mapping

(A) map on the processor in the new mapping and the orig-
inal processors themselves communicated.

∀i,j,k,lC
′
i,j,k,l ≤ Ai,j (10)

∀i,j,k,lC
′
i,j,k,l ≤ Ak,l (11)

∀ i,j,k,l,
m,n,o,p

TC′ i,j,k,l,
m,n,o,p

= Ti,j,m,n ∗ Tk,l,o,p (12)

∀ i,j,k,l,
m,n,o,p

C′
m,n,o,p = TC′ i,j,k,l,

m,n,o,p
∗ Ci,j,k,l (13)

1The allowable performance degradation in this work is specified as the

amount of extra communication latency permitted.

Area constraint and objective function.
Constraint 14 specifies that the area of the chip occupied

by the active processors. The objective funtion 15 maxi-

mizes the area of the chip. Note that this can increase the

communication cost. However, the cost has to be kept under

the sum of the old communication cost and the relaxation

allowed (captured by the variable Relaxation). Therefore,
this model works towards increasing the area while keeping

the communication costs under a specified limit.

Area =
(

max(Row) − min(Row)
)

(14)

∗
(

max(Col) − min(Col)
)

maximize(Area) (15)

4.3 Phase 2

The second phase of the ILP formulation accepts as input

the task-to-processor mapping B, and the communication
map, C ′, given by Phase 1. This second phase now con-

siders each processor as being unique based on the power it

expends, which is related to the nature of the task assigned

to that processor. It then splits tasks that consume too much

power among multiple processors. The nature of the split

is such that the area calculated by Phase 1 forms the upper

bound of the area usable by Phase 2.

It needs to be noted that the very nature of splitting the

computation means that the number of processors that com-

municate with each other increases. It is possible that the

communication characteristics of this new sub-computation

is different from the original computation; however, in this

paper, a conservative approach is adopted and all communi-

cation is assumed to be uniform. That is, if two processors,

Pi,j and Pk,l, communicate in mapping generated by phase

one and if in the new mapping Pi,j is split into Pm,n and

Po,p; then, in the new mapping, it is assumed that Pm,n and

Po,p communicate with Pk,l and no qualification about the

communication is made.

Increased active processors constraint.
The splitting of the tasks that consume power above a

threshold, τ , is achieved by Constraint 16. Here, Pi,j is the

power consumption of a processor in Bi,j . The new map-

ping is given byDi,j and the threshold power value used in

splitting is ρ.

n
∑

i=1

m
∑

j=1

Di,j =
n

∑

i=1

m
∑

j=1

(Pi,j/ρ) (16)

Embedding constraints.
The mapping from processors in B to those in D is cap-

tured by constraint 17. That is T ′
i,j,k,l is 1 if a task exe-

cuting on a processor Bi,j maps onto Dk,l. Constraint 18

ensures that a processor in D runs only one task of B. The
mapping of split processors is accounted for by constraint

19. According to this constraint, a task mapped onto pro-

cessor in B, if split into multiple tasks, will cause that par-
ticular processor in B to be linked as many processors inD
as the number of split tasks.

∀i,j

∑

k,l

T ′
i,j,k,l ≥ Bi,j ∗ Dk,l (17)

∀k,l

∑

i,j

T ′
i,j,k,l ≤ 1 (18)

∀i,j

∑

k,l

T ′
i,j,k,l =

n
∑

i=1

m
∑

j=1

(Pi,j/ρ) (19)

Communication constraints.
These are similar to constraints 5 to 13 and, thus, are not

presented again.

Area constraint.
This is similar to constraint 14 and is not presented again.

Energy window constraint.
It is ensured by constraint 20 below that power dissipa-

tion is spread within the active area of the chip. This is done

by ensuring that, for any square window, of size W ∗ W ,
within the chip, the total power dissipation due to proces-

sors and routers is within a preset limitWenergy . This has a

sort of flattening effect on the power consumption withing

the active area, as the area in which power is dissipated is

reduced and activity is evenly spread across the active area.

Here, ρ and θ are the threshold consumption of power and
the power spent by one pair of communicating processors

in a router, respectively.

∀i∈0..R−W+1,j∈0..C−W+1

i+W−1
∑

r=i

j+W−1
∑

c=j

(20)

(

D(r, c) ∗ τ + R′(r, c) ∗ θ
)

≤ Wenergy

Objective function.
The objective function in this phase of our ILP formu-

lation is to minimize the total communication cost, which

ensures that the overall power density is lowered as well.

This is because the total power depends on the amount of

processing done (which remains constant) and the amount

of communication. Since constraint 21 below reduces the

communication, it helps to reduce the power and hence

power density as well.

minimize(R′) (21)

Algorithm 1
1: //Time Taken calculates the total execution time
2: Time Taken := 0
3: while all chunks on all processors are not scheduled do
4: Time Taken := Time Taken + 1

5: Ti+δ = HS(Ti, floorplan, power, schedulable, cycles, δ)
6: //the time is incremented and HotSpot function is called to estimate the

temperature
7: for each processor p do
8: //Schedulable(p) indicates whether processor p is active
9: //Chunk Count(p) is the amount of computation p needs to perform
10: if (Schedulable(p) =1) then
11: Chunk Count(p) := Chunk Count(p) -1
12: end if
13: //If p is too hot, it cannot be active
14: if Temperature(p)> τ then
15: Schedulable(p) = 0
16: else
17: Schedulable(p) = 1
18: end if
19: end for
20: //If the router is too hot, processors communicating via it, are switched

off
21: for each router r do
22: if Temperature(r)> Threshold then
23: for all pairs of processors (p1,p2) communicating via r do
24: Schedulable(p1) = 0
25: Schedulable(p2) = 0

26: end for
27: end if
28: end for
29: //Estimate the amount of communication taking place via each router r
30: for all routers r do
31: Schedulable(r) =0
32: end for
33: for all routers r do
34: for all pairs of processors (p1,p2) communicating via r do
35: if Schedulable(p1) = 1 && Schedulable(p2) =1) then
36: Schedulable(r) := Schedulable(r) + 1

37: end if
38: end for
39: end for
40: end while

4.4 Implementation Details

Our implementation in this work uses the HotSpot tool

[12] in order to estimate the temperature of on-chip ele-

ments. HotSpot takes as input the floorplan of the chip,

the temperature at any time i (Ti) of each element of the

chip, and the power consumption of that element during a

time period δ and returns the temperature of each element
at time i+δ. In mathematical terms, this can be represented
as:

Ti+δ = HS(Ti, f loorplan, power, cycles, δ)

In order to simulate the task-to-processor mapping, run-

time processor activity and runtime processor shutdown,

the algorithm shown in Algorithm 1 is used. The tasks

are broken into sub-tasks called chunks. The scheduling

is at the granularity of chunks. The algorithm calculates

the temperature at each step and, if the temperature of a

router approaches the threshold, the concerned processor is

shutdown. If a router becomes too hot, then all processors

that communicate using that processor are shut down. The

time at which the last task completes is taken as time of

Figure 3. (a) Default mapping. (b) Mapping
produced by the first phase. (c) Mapping pro-
duced by the second phase.

Table 2. Benchmarks used.
Benchmark Cycles Processor Energy Router Energy

Millions (µJ) (µJ)

adi 438 1239551.1 604697
eflux 56 80918.1 1696502
tsf 1799 2548001.6 515800
syntc1 438 1239551.1 0
syntc1 56 80918.1 85917071

completion of the particular mapping.

4.5 Example Application of Our Ap-
proach

Figure 3 shows an example application of our scheme.

The default (performance-oriented) mapping is given in

Figure 3(a). The grid size is 5 ∗ 5. There are 6 tasks and
they all communicate with each other. Tasks 1, 2, 3, and

4 are assumed to have power level 1. Tasks 5 and 6 are

assumed to have power level 2. Hence, the average power

density is 8/6 = 1.25 W/unit area. The threshold power
level, ρ, is assumed to be 2. Figure 3 shows the mapping
obtained at the end of the first phase of our scheme. As

can be seen, the active area of the processors has increased

from 6 to 9, which causes the average power density to re-

duce (8/9 = .88W/unitarea); but the power density of
processors 5 and 6 is still 2. In phase 2, the workloads of

processors 5 and 6 are split into 2 sub-tasks each (5a, 5b, 6a,

6b) of power level 1. This causes the average power density

to remain the same, but power density at any point now is at

most 1.

Table 3. Architectural details.
Parameter Brief Explanation

Processor 300MHz single issue
Chip Area 8.2mm * 7mm

τ 86.12 ◦C
W 1

Mesh size 5 * 5 Grid
Processor Area 1.4mm * 1.4 mm
Router Area .24mm * 1.4mm

0

20

40

60

80

100

adi eflux tsf syntc1 syntc2

P
er

ce
nt

ag
e

of
 C

hu
nk

s

Original Mapping Optimized Mapping

Figure 4. Percentage of execution chunks in
which a thermal emergency is dealt with.

5 Experimental Results

Five loop-intensive parallel algorithms with character-

istics given in Table 2 are used as benchmarks. The

second column of this table gives the cycles for execu-

tion for each of the benchmarks and the third and fourth

columns give the processor and router energy numbers, re-

spectively, under the performance oriented mapping. The

last two benchmarks are synthetic benchmarks that exhibit

different extreme communication patterns. Specifically,

in syntc1, very little inter-processor communication takes
place, whereas in syntc2, the processors communicate fre-
quently. The ILP solver used is XPressMP [6]. The details

of the architecture simulated are given in Table 3.

Figure 4 shows, for each benchmark, the percentage of

chunks in which a thermal emergency that requires the run-

time mechanism to intervene is seen. Note that these num-

bers only capture the absolute number of chunks in which

an emergency is seen, the number of elements affected by

such an emergency is captured by the overall performance

plot given below. We see from Figure 4 that our thermal-

aware approach cuts the the number of thermal emergencies

by 42% on average.

Figure 5 shows the normalized performance of each of

the benchmarks for the default mapping and the optimized

mapping. As can be seen from this bar-chart, the proposed

method reduces the overall execution time by 29% on av-

erage. This large reduction is a result of the reduction in

the number of times a thermal emergency occurs. The im-

proved performance values also capture the number of ther-

mal emergencies that that occur in a chunk in which a ther-

mal emergency is noted.

6 Conclusion

This paper proposes a novel compiler-directed scheme

to reduce the occurrences of thermal emergencies in NoC

based chip multi-processor systems. The proposed scheme

0

0.2

0.4

0.6

0.8

1

adi eflux tsf syntc1 syntc2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Original Mapping Modified Mapping

Figure 5. Normalized performance of the orig-
inal and optimized mappings.

reduces the power density in the active area of the chip,

which is the primary cause of runtime thermal emergencies.

The scheme reduces the occurrence of thermal emergencies

in all benchmarks tested and improves the overall perfor-

mance as well. The proposed scheme is implemented us-

ing ILP and works orthogonally with all dynamic, hardware

based schemes that handle runtime emergencies.

References

[1] L. Benini and G. deMicheli. Networks on chips: A new SoC paradigm. IEEE

Comp., 35(1), 2002. IEEE Comp., 35(1), 2002.

[2] D. Brooks and M. Martonosi. Dynamic thermal management for high-

performance microprocessors. In Proc. of the International Symposium on
High-Performance Computer Architecture,Jan. 2001.

[3] P. Chaparro, G. Magklis, J. Gonzlez and A. Gonzlez. Distributing the Fron-

tend for Temperature Reduction In Proc. of the International Symposium on
High-Performance Computer Architecture,2005.

[4] William J. Dally, Brian Towles Route packets, not wires: on-chip interconnec-

tion networks In Proceedings of the Design Automation Conference, 2001.

[5] J. Donald and M. Martonosi. Temperature-Aware Design Issues for SMT and

CMPArchitectures. In Proc. of the Workshop on Complexity-Effective Design
, June 2004.

[6] C. Guret, C. Prins and M. Sevaux. Applications of optimization with Xpress-

MP. Dash Optimization, 2002.

[7] S. Heo, K. Barr, and K. Asanovic. Reducing Power Density through Activ-

ity Migration. In Proceedings of the 2003 International symposium on Low
power electronics and design.2003.

[8] J. Hu, R. Marculescu. Energy-Aware Mapping for Tile-based NOC Architec-

tures Under Performance Constraints, In Proc. Asia South Pacific - Design
Automation Conference, 2003.

[9] E. Rohou and M. Smith. Dynamically managing processor temperature and

power. In Proc. of the Second Workshop on Feedback-Directed Optimization,
Nov. 1999.

[10] L. Shang, L. S. Peh, A. Kumar, N. K. Jha, Thermal Modeling, Characteri-

zation and Management of On-Chip Networks, In Proc. of the International
Symposium on Microarchitecture, 2004.

[11] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-Theoretic Techniques

and Thermal-RC Modeling for Accurate and Localized Dynamic Ther-

mal Management. In Proc. of the 2002 International Symposium on High-
Performance Computer Architecture,February, 2002.

[12] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and

D. Tarjan. Temperature-Aware Microarchitecture. In Proceedings of the 30th
International Symposium on Computer Architecture,pp. 2-13, June 2003.

[13] N. Sri Hari Krishna, G. Chen, M. Kandemir, Y. Xie. Temperature-Sensitive

Loop Parallelization for Chip Multiprocessors. In Proceedings of the Interna-
tional Conference of Computer Design, 2005.

